
Calcul du potentiel dans 
un milieu conducteur bidimensionnel 

__________

1 - Objectif

L'objectif  est  de  retrouver  par  un  calcul  sur  ordinateur  les  résultats  expérimentaux  de
conduction électrique entre 2 électrodes  plongées dans une solution ionique.  Ce calcul  va
donner la valeur du potentiel en tout point, c'est à dire l'équivalent de la valeur mesurée VSM.

On pourra alors utiliser gnuplot pour tracer les équipotentielles comme cela a été fait avec le
fichier expérimental "mesures_01.txt".

Le calcul permettra aussi de trouver les lignes de courant, c'est à dire les trajectoires des ions
depuis l'électrode P vers l'électrode N (pour les ions positifs). On utilise pour cela le fait que
les  lignes  de  courant  sont  partout  perpendiculaires  (orthogonales)  aux  équipotentielles.  Il
s'agit donc d'un calcul basé sur des propriétés géométriques.

2 - Discrétisation

A notre échelle, la solution ionique dans laquelle on fait passer du courant apparaît continue.
Le potentiel (la tension VSM) est donc une fonction définie en tout point du domaine :

-13 cm < x < + 13 cm        et            -13 cm < y < + 13 cm

Ceci correspond à un nombre infini de point. 

Trouver  une  telle  fonction  (le  potentiel),  lorsque  c'est  possible,  relève  de  "l'analyse
mathématique".  Dans le cas présent, ce n'est  pas possible et  on a recours à un calcul par
ordinateur,  en  un  nombre  important,  mais  fini de  points.  On  fera  ici  un  calcul  sur  un
quadrillage de 130 points par 130 points, soit 16900 points, qui seront séparés d'un millimètre.

Ces 16900 points représentent 1/4 du domaine, et par symétrie, on reconstituera le domaine
entier,  soit  67600  points.  On  peut  comparer  ce  nombre  aux  196  points  mesurés
expérimentalement.

On parle  de  maillage  ou de discrétisation  du domaine,  et  ce  traitement  est  du ressort  de
"l'analyse numérique".

Plus le maillage est fin, plus le résultat est précis et se rapproche de la réalité, mais plus le
temps de calcul est long : déjà avec un maillage de 130 X 130 mailles, la durée calcul est de
l'ordre d'une minute.
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3 - Equation physique à résoudre

L'équation à résoudre a comme inconnue le potentiel électrique (la tension VSM) en chaque
point du maillage. Les physiciens et les numériciens ont montré que le potentiel en une maille
doit être la moyenne du potentiel dans les 4 mailles adjacentes.

Maille
   n

a

b

c d

Ainsi, le potentiel dans la maille n doit être la moyenne du potentiel dans les 4 mailles a, b, c
et d. 
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V V V V
V
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Ceci doit être vérifié pour toutes les mailles du domaine,  avec leurs 4 mailles adjacentes.
Lorsqu'une maille appartient à une électrode,  le potentiel  est fixé par le générateur relié à
l'électrode.  On utilise  ce  potentiel  imposé  pour  calculer  par  la  moyenne  le  potentiel  des
mailles voisines.

Pour les mailles qui sont à la périphérie du domaine, soit on fixe la valeur du potentiel si la
frontière est conductrice, soit la frontière est isolante et on montre que cette condition est prise
en compte en ajoutant une maille  extérieure au domaine et  en fixant le potentiel  de cette
maille extérieure égal à celui de la maille considérée. 

Un exemple simple permet récapituler ce paragraphe. Dans la figure ci-dessous, on cherche le
potentiel dans les 16 mailles a, b, c, d, e, f, g, h, i, u, v, w, x, y, z et t.

Le potentiel dans la maille e doit être la moyenne du potentiel dans les mailles b, h, d et f.
Le potentiel dans la maille b doit être la moyenne du potentiel dans les mailles a, c et e et de
la valeur imposée 1 au dessus de la maille b.
Le potentiel dans la maille a doit être la moyenne du potentiel dans les mailles b et d et des
valeurs imposées 1 et 0 au dessus et à gauche de la maille a.

Le potentiel dans la maille w doit être la moyenne des potentiels dans les mailles i, v, x et de
la valeur flottante w elle-même.
Le potentiel dans la maille x doit être la moyenne des potentiels dans les mailles w et y et de
deux fois la valeur flottante x (au dessous et à droite de la maille x)
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Potentiel imposé à la frontière supérieure = 1 volt
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4 - Résolution par itération

De ce qui précède, on dispose d'autant d'équations qu'il y a de maille dans le domaine (dans
l'exemple  simple,  16  mailles,  dans  le  problème  réel,  16900  mailles).  On  sait  résoudre
directement en une seule étape un tel système de 16900 équations à 16900 inconnues avec un
ordinateur, mais la mémoire requise peut être réduite et  la précision du résultat améliorée en
procédant par itérations. Cela signifie qu'on procède par approximations successives, et que la
précision du résultat s'améliore petit à petit pendant que l'ordinateur travaille.

En reprenant l'exemple simple avec 16 mailles, on fixe d'abord arbitrairement une valeur pour
le potentiel initial de chaque maille (étape d'initialisation). Le plus simple est de prendre la
valeur 0.

1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
 Tableau 0
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Les valeurs imposées à gauche (0 volt) et au dessus (1 volt) sont également indiquées dans la
première colonne et la première ligne du tableau.

On calcule à partir de ces valeurs initiales pour chaque maille les moyennes et on les reporte
dans le tableau 1 :

1 1 1 1
0 0,25 0,25 0,25 0,25
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Tableau 1

On a bien pour la maille a : (1 + 0 + 0 + 0) / 4 = 0,25. Il en est de même pour les 15 autres
mailles. 

On refait de même en calculant les moyennes à partir du tableau 1 pour obtenir un tableau 2 :

1 1 1 1
0 0,3125 0,375 0,375 0,375
0 0,0625 0,0625 0,0625 0,0625
0 0 0 0 0
0 0 0 0 0
Tableau 2

On continue ce processus itératif (on refait à chaque fois le même calcul) pour passer d'un
tableau au suivant.  On constate et on peut montrer  qu'on s'approche progressivement  d'un
tableau dans lequel chaque case est la moyenne des 4 cases adjacentes.

1 1 1 1
0 0,359375 0,4375 0,453125 0,453125
0 0,09375 0,125 0,125 0,125
0 0,015625 0,015625 0,015625 0,015625
0 0 0 0 0
Tableau 3

1 1 1 1
0 0,3828125 0,484375 0,50390625 0,5078125
0 0,125 0,16796875 0,1796875 0,1796875
0 0,02734375 0,0390625 0,0390625 0,0390625
0 0,00390625 0,00390625 0,00390625 0,00390625
Tableau 4

1 1 1 1
0 0,40234375 0,513671875 0,54296875 0,54781563
0 0,14453125 0,20703125 0,22265625 0,2265625
0 0,041992188 0,059570313 0,065429988 0,065429688
0 0,008789063 0,012695313 0,012695313 0,012695313
Tableau 5
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1 1 1 1
0 0,414550781 0,538085938 0,571044922 0,579345703
0 0,162841797 0,235107422 0,260498047 0,265625
0 0,053222798 0,08178711 0,090087891 0,092529297
0 0,015869141 0,023437501 0,025878907 0,0225878907
Tableau 6

On peut visualiser le potentiel obtenu dans le tableau 6 avec gnuplot :

On poursuit ainsi les itérations jusqu'au moment où on considère que les résultats n'évoluent
que d'une quantité jugée suffisamment petite.

Remarque 1 : on vérifie bien sur la figure ci-dessus que les conditions aux limites de potentiel
imposé à 1 et à 0 sont satisfaites.

Remarque 2 : il faudrait un maillage plus fin (ici 4 mailles X 4 mailles pour le calcul) pour
obtenir une bonne approximation du problème continu.
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Remarque 3 : Seules 6 itérations ont été effectuées pour obtenir ce résultat. Quand l'ordinateur
effectue les itérations,  leur  nombre peut être de 100000 à plusieurs millions  :  le  calcul  à
chaque itération est très simple, mais il doit être répété un grand nombre de fois.

Remarque 4 : Dans ce cas simple,  on résout facilement de façon exacte le système de 16
équations vérifiées par le potentiel aux mailles a, b, c, d, e, f, g, h, i, u, v, w, x, y, z, t. On
trouve :

 =  x
1
2

 =  w
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901

 =  v
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901

 =  b
626
901

 =  a
1
2

 =  h
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 =  t
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, , , , , , , , , , ,{

 =  d
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 =  g
199
901

 =  y
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901

 =  i
1
2

, , , , }

On voit que le résultat exact, qui serait obtenu au bout d'un nombre infini d'itérations diffère
notablement du résultat obtenu après 6 itérations :

1 1 1 1
0 0,5 0,694783574 0,779134295 0,812430633
0 0.305216426 0,5 0,609322974 0,658157603
0 0,220865705 0,390677026 0,5 0,552719201
0 0,187569367 0,341842397 0,447280799 0,5
Tableau ∞

On visualise ce résultat exact avec gnuplot :
 

Ceci  montre  bien  qu'il  faut  être  aussi  prudent  et  critique  avec  le  résultat  d'un  calcul
numérique, qu'avec des mesures expérimentales.
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5 - Applications pratiques

On  veut  maintenant  effectuer  le  calcul  qui  correspond  aux  conditions  des  mesures
expérimentales : récipient de 26 cm X 26 cm contenant de l'eau salée et 2 électrodes de 3 cm
de large, séparées de 14 cm. Le programme qui effectue ce calcul est "cond_02_isol.exe". 

Le programme demande le nom du fichier de commande,  qui contient  toutes les données
(nombre de mailles, position des électrodes, nombre d'équipotentielles à tracer, etc ...). 

Voir  la  feuille  séparée  pour  préparer  le  fichier  de  commande,  qui  sera  nommé
"datai_electro_01.txt".

Double cliquer sur l'icône du programme "cond_02_isol.exe".

L'exécution dure à peu près une minute : ne pas s'impatienter s'il semble ne rien se produire,
c'est bon signe. On obtient à la fin un message du type: "Résolution en 99258 itérations".
"OK ?" Taper ok et entrée.

Le programme crée de nombreux fichiers nécessaires au tracé. Il crée en particulier le fichier
"datai_electro_01.plt"  (dans  la  mesure  où  le  fichier  de  commande  s'appelle
"datai_electro_01.txt"). Double cliquer sur le fichier "datai_electro_01.plt" lu par gnuplot. Le
traitement  par  gnuplot  dure  plusieurs  secondes,  ne  pas  s'impatienter.  On  voit  alors  les
équipotentielles en 3D. Modifier avec Wordpad  le fichier .plt suivant les indications données
(# à retirer) pour visualiser les équipotentielles en 2D, ou pour imprimer la figure (création
d'un fichier postscript intermédiaire).

On comparera le résultat du calcul aux résultats expérimentaux.

Le programme crée aussi un fichier "datai_electro_01_e.plt".  Double cliquer sur ce fichier
pour  voir  les  lignes  de  courant  :  elles  correspondent  aux  trajectoires  des  ions  entre  les
électrodes. Vérifier l'orthogonalité des lignes de courant et des équipotentielles. 

On peut de la même façon voir l'influence de divers paramètres en modifiant le fichier de
commande et en le renommant "datai_electro_02.txt", puis _03, puis _04, etc ...

Un paramètre très important concerne la frontière isolante ou conductrice. Tester ce paramètre
en modifiant la valeur 1 ou 0 en fin du fichier de commande.

On peut tester l'influence de la largeur des électrodes : 1 cm, 6 cm, 12 cm, ... et voir l'impact
sur les équipotentielles et les lignes de courant. Ne pas oublier de modifier le point de départ
des lignes de courant dans le fichier de commande, ainsi éventuellement que leur nombre.

On peut de la même façon tester l'écartement des électrodes : 20 cm,  10 cm, 5 cm, 1 cm.

On  notera  sur  ce  cas  concret  la  complémentarité  des  mesures  expérimentales  et  des
simulations numériques sur ordinateur, et l'investissement en temps que demande chacune de
ces approches.
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