Calcul du potentiel dans
un milieu conducteur bidimensionnel

1 - Objectif

L'objectif est de retrouver par un calcul sur ordinateur les résultats expérimentaux de
conduction électrique entre 2 électrodes plongées dans une solution ionique. Ce calcul va
donner la valeur du potentiel en tout point, c'est a dire 1'équivalent de la valeur mesurée Vgu.

On pourra alors utiliser gnuplot pour tracer les équipotentielles comme cela a été fait avec le
fichier expérimental "mesures 01.txt".

Le calcul permettra aussi de trouver les lignes de courant, c'est a dire les trajectoires des ions
depuis I'¢lectrode P vers 1'¢électrode N (pour les ions positifs). On utilise pour cela le fait que
les lignes de courant sont partout perpendiculaires (orthogonales) aux équipotentielles. Il
s'agit donc d'un calcul basé sur des propriétés géométriques.

2 - Discrétisation

A notre échelle, la solution ionique dans laquelle on fait passer du courant apparait continue.
Le potentiel (la tension Vsy) est donc une fonction définie en tout point du domaine :

-13em<x<+ 13 cm et -13em<y<+13cm
Ceci correspond a un nombre infini de point.

Trouver une telle fonction (le potentiel), lorsque c'est possible, releve de "l'analyse
mathématique". Dans le cas présent, ce n'est pas possible et on a recours a un calcul par
ordinateur, en un nombre important, mais fini de points. On fera ici un calcul sur un
quadrillage de 130 points par 130 points, soit 16900 points, qui seront sé¢parés d'un millimetre.

Ces 16900 points représentent 1/4 du domaine, et par symétrie, on reconstituera le domaine
entier, soit 67600 points. On peut comparer ce nombre aux 196 points mesurés
expérimentalement.

On parle de maillage ou de discrétisation du domaine, et ce traitement est du ressort de
"l'analyse numérique".

Plus le maillage est fin, plus le résultat est précis et se rapproche de la réalité¢, mais plus le
temps de calcul est long : déja avec un maillage de 130 X 130 mailles, la durée calcul est de
l'ordre d'une minute.
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3 - Equation physique a résoudre

L'équation a résoudre a comme inconnue le potentiel électrique (la tension Vgsv) en chaque
point du maillage. Les physiciens et les numériciens ont montré que le potentiel en une maille
doit étre la moyenne du potentiel dans les 4 mailles adjacentes.

a

Maille

C 0 d

b

Ainsi, le potentiel dans la maille n doit étre la moyenne du potentiel dans les 4 mailles a, b, c
et d.

V :Va+Vb+Vc+Vd
" 4

Ceci doit étre vérifié pour toutes les mailles du domaine, avec leurs 4 mailles adjacentes.
Lorsqu'une maille appartient a une électrode, le potentiel est fixé par le générateur reli¢ a
I'¢lectrode. On utilise ce potentiel imposé pour calculer par la moyenne le potentiel des
mailles voisines.

Pour les mailles qui sont a la périphérie du domaine, soit on fixe la valeur du potentiel si la
frontiére est conductrice, soit la frontic¢re est isolante et on montre que cette condition est prise
en compte en ajoutant une maille extérieure au domaine et en fixant le potentiel de cette
maille extérieure égal a celui de la maille considérée.

Un exemple simple permet récapituler ce paragraphe. Dans la figure ci-dessous, on cherche le
potentiel dans les 16 mailles a, b, c,d, e, f, g, h,i,u, v, w, X, y, zett.

Le potentiel dans la maille e doit étre la moyenne du potentiel dans les mailles b, h, d et f.

Le potentiel dans la maille b doit étre la moyenne du potentiel dans les mailles a, c et e et de
la valeur imposée 1 au dessus de la maille b.

Le potentiel dans la maille a doit étre la moyenne du potentiel dans les mailles b et d et des
valeurs imposées 1 et 0 au dessus et a gauche de la maille a.

Le potentiel dans la maille w doit étre la moyenne des potentiels dans les mailles i, v, x et de
la valeur flottante w elle-méme.

Le potentiel dans la maille x doit étre la moyenne des potentiels dans les mailles w et y et de
deux fois la valeur flottante x (au dessous et a droite de la maille x)
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Potentiel impos¢ a la frontiere supérieure = 1 volt
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4 - Résolution par itération

De ce qui précéde, on dispose d'autant d'équations qu'il y a de maille dans le domaine (dans
l'exemple simple, 16 mailles, dans le probleme réel, 16900 mailles). On sait résoudre
directement en une seule étape un tel systeme de 16900 équations a 16900 inconnues avec un
ordinateur, mais la mémoire requise peut étre réduite et la précision du résultat améliorée en
procédant par itérations. Cela signifie qu'on procede par approximations successives, et que la
précision du résultat s'améliore petit a petit pendant que l'ordinateur travaille.

En reprenant l'exemple simple avec 16 mailles, on fixe d'abord arbitrairement une valeur pour
le potentiel initial de chaque maille (étape d'initialisation). Le plus simple est de prendre la
valeur 0.

1(1]1]1
0({0|0|0]|O0
0(0[0|0]O0
0({0[0|0]0
0({0(0|0]O0
Tableau 0
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Les valeurs imposées a gauche (0 volt) et au dessus (1 volt) sont également indiquées dans la
premiere colonne et la premiére ligne du tableau.

On calcule a partir de ces valeurs initiales pour chaque maille les moyennes et on les reporte
dans le tableau 1 :

,25 10,25

O
S|Io ||
[} el [ L ) o
S|Io|IC(O|—

0
0
0]0
0

Tableau 1

On a bien pour la maille a: (1 + 0+ 0+ 0) /4 =0,25. Il en est de méme pour les 15 autres
mailles.

On refait de méme en calculant les moyennes a partir du tableau 1 pour obtenir un tableau 2 :

1 1 1 1
01]0,3125]0,375 |0,375 | 0,375
0] 0,0625 | 0,0625 | 0,0625 | 0,0625
00 0 0 0
00 0 0 0
Tableau 2

On continue ce processus itératif (on refait a chaque fois le méme calcul) pour passer d'un
tableau au suivant. On constate et on peut montrer qu'on s'approche progressivement d'un
tableau dans lequel chaque case est la moyenne des 4 cases adjacentes.

1 1 1 1
01]0,359375 | 0,4375 0,453125 | 0,453125
00,09375 10,125 0,125 0,125
0

0

0,015625 | 0,015625 | 0,015625 | 0,015625
0 0 0 0
Tableau 3

1

1

1

1

0,3828125

0,484375

0,50390625

0,5078125

0,125

0,16796875

0,1796875

0,1796875

0,02734375

0,0390625

0,0390625

0,0390625

0
0
0
0

0,00390625

0,00390625

0,00390625

0,00390625

Tableau 4

1

1

1

1

0,40234375

0,513671875

0,54296875

0,54781563

0,14453125

0,20703125

0,22265625

0,2265625

0,041992188

0,059570313

0,065429988

0,065429688

0
0
0
0

0,008789063

0,012695313

0,012695313

0,012695313

Tableau 5
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1 1 1 1

0,414550781 | 0,538085938 | 0,571044922 | 0,579345703

0,162841797 | 0,235107422 | 0,260498047 | 0,265625

0

0

01]0,053222798 | 0,08178711 | 0,090087891 | 0,092529297
0]0,015869141 | 0,023437501 | 0,025878907 | 0,0225878907

Tableau 6

On peut visualiser le potentiel obtenu dans le tableau 6 avec gnuplot :

"carre_main_5_5 txt"
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On poursuit ainsi les itérations jusqu'au moment ou on considere que les résultats n'évoluent
que d'une quantité jugée suffisamment petite.

Remarque 1 : on vérifie bien sur la figure ci-dessus que les conditions aux limites de potentiel
imposé a 1 et a 0 sont satisfaites.

Remarque 2 : il faudrait un maillage plus fin (ici 4 mailles X 4 mailles pour le calcul) pour
obtenir une bonne approximation du probléme continu.
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Remarque 3 : Seules 6 itérations ont été effectuées pour obtenir ce résultat. Quand 1'ordinateur
effectue les itérations, leur nombre peut étre de 100000 a plusieurs millions : le calcul a
chaque itération est trés simple, mais il doit étre répété un grand nombre de fois.

Remarque 4 : Dans ce cas simple, on résout facilement de facon exacte le systeme de 16
équations vérifiées par le potentiel aux mailles a, b, ¢, d, e, f, g, h, i, u, v, w, X, y, z, t. On
trouve :

1 403 308 . 626 1 352 732 549 593 1 169

X = o Y 901 27 901 47 27 901t 901 T 901 7T 9017 €T 24 gor
2205 702 199 498 1,
901" “~ 9018~ 9017 " 901" " 2

On voit que le résultat exact, qui serait obtenu au bout d'un nombre infini d'itérations differe
notablement du résultat obtenu apres 6 itérations :

1

1

1

1

0,5

0,694783574

0,779134295

0,812430633

0.305216426

0,5

0,609322974

0,658157603

0,220865705

0,390677026

0,5

0,552719201

0
0
0
0

0,187569367

0,341842397

0,447280799

0,5

Tableau ®

On visualise ce résultat exact avec gnuplot :

"carre_main_5_5_exact txt"
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Ceci montre bien qu'il faut étre aussi prudent et critique avec le résultat d'un calcul
numérique, qu'avec des mesures expérimentales.

-6/7-

Calcul numérique de la conduction bidimensionnelle



5 - Applications pratiques

On veut maintenant effectuer le calcul qui correspond aux conditions des mesures
expérimentales : récipient de 26 cm X 26 cm contenant de I'eau salée et 2 électrodes de 3 cm
de large, séparées de 14 cm. Le programme qui effectue ce calcul est "cond 02 isol.exe".

Le programme demande le nom du fichier de commande, qui contient toutes les données
(nombre de mailles, position des électrodes, nombre d'équipotentielles a tracer, etc ...).

Voir la feuille séparée pour préparer le fichier de commande, qui sera nommé
"datai_electro O1.txt".

Double cliquer sur l'icone du programme "cond 02 isol.exe".

L'exécution dure a peu pres une minute : ne pas s'impatienter s'il semble ne rien se produire,
c'est bon signe. On obtient a la fin un message du type: "Résolution en 99258 itérations".
"OK ?" Taper ok et entrée.

Le programme crée de nombreux fichiers nécessaires au tracé. Il crée en particulier le fichier
"datai_electro O1.plt" (dans la mesure ou le fichier de commande s'appelle
"datai_electro_01.txt"). Double cliquer sur le fichier "datai_electro O01.plt" lu par gnuplot. Le
traitement par gnuplot dure plusieurs secondes, ne pas s'impatienter. On voit alors les
équipotentielles en 3D. Modifier avec Wordpad le fichier .plt suivant les indications données
(# a retirer) pour visualiser les équipotentielles en 2D, ou pour imprimer la figure (création
d'un fichier postscript intermédiaire).

On comparera le résultat du calcul aux résultats expérimentaux.

Le programme crée aussi un fichier "datai _electro 01 e.plt". Double cliquer sur ce fichier
pour voir les lignes de courant : elles correspondent aux trajectoires des ions entre les
¢lectrodes. Vérifier l'orthogonalité des lignes de courant et des équipotentielles.

On peut de la méme fagon voir l'influence de divers parametres en modifiant le fichier de
commande et en le renommant "datai_electro 02.txt", puis 03, puis 04, etc ...

Un parametre trés important concerne la frontiere isolante ou conductrice. Tester ce parameétre
en modifiant la valeur 1 ou 0 en fin du fichier de commande.

On peut tester l'influence de la largeur des ¢électrodes : 1 cm, 6 cm, 12 cm, ... et voir 1'impact
sur les équipotentielles et les lignes de courant. Ne pas oublier de modifier le point de départ
des lignes de courant dans le fichier de commande, ainsi éventuellement que leur nombre.

On peut de la méme facon tester 1'écartement des €lectrodes : 20 cm, 10 cm, 5 cm, 1 cm.
On notera sur ce cas concret la complémentarit¢ des mesures expérimentales et des

simulations numériques sur ordinateur, et I'investissement en temps que demande chacune de
ces approches.
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